Электродвигатели. Общие сведения.

Преобразование энергии в современных электродвигателях осуществляется посредством магнитного поля. Такие электродвигатели называются индуктивными. Возможно также создание электродвигателей, в которых энергия преобразуется посредством электрического поля (емкостные электродвигатели), однако такие двигатели существенного практического распространения не имеют. Это объясняется следующим.
В обоих классах двигателей взаимодействие между отдельными частями электродвигателя и преобразование энергии происходят через поле, существующее в среде, которая заполняет пространство между взаимодействующими частями электрической машины. Этой средой обычно является воздух или другое вещество с подобными же магнитными и электрическими свойствами. Однако при практически достижимых интенсивностях магнитного и электрического полей количество энергии в единице объема такой среды будет при магнитном поле в тысячи раз больше, чем при электрическом. Поэтому при одинаковых внешних размерах или габаритах электродвигателей обоих классов, индуктивные электродвигатели будут развивать значительно большую мощность.
Для получения по возможности более сильных магнитных полей применяются ферромагнитные сердечники, которые являются неотъемлемыми частями каждого электродвигателя. При переменных магнитных полях сердечники с целью ослабления вихревых токов и уменьшения вызываемых ими потерь энергии изготовляются из листовой электротехнической стали. Другими неотъемлемыми частями электродвигателя являются обмотки из проводниковых материалов, по которым протекают электрические токи. Для электрической изоляции обмоток применяются различные электроизоляционные материалы.
Как известно, электродвигатели тока обладают свойством обратимости: каждый электрический генератор может работать в качестве двигателя и наоборот, а в каждом трансформаторе и электромашинном преобразователе электрической энергии направление преобразования энергии может быть изменено на обратное. Однако каждая выпускаемая электромашиностроительным заводом вращающаяся машина обычно предназначается для одного, определенного режима работы, например, в качестве генератора или двигателя. Точно так же в трансформаторах одна из обмоток предусматривается для работы в качестве приемника электрической энергии (первичная обмотка), а другая (вторичная обмотка) — для отдачи энергии. При этом оказывается возможным наилучшим обра зом приспособить электродвигатель для заданных условий работы и добиться наилучшего использования материалов, т.е. получить наибольшую мощность на единицу в еса двигателя.
Преобразование энергии в электродвигателях неизбежно связано с ее потерями, вызванными перемагничиванием ферромагнитных сердечников, прохождением тока через проводники, трением в подшипниках и о воздух и т. д. Поэтому потребляемая мощность всегда больше отдаваемой, или полезной, мощности, а коэффициент полезного действия (КПД) меньше 100%.
Тем не менее, электродвигатели по сравнению с тепловыми и некоторыми другими типами машин, являются весьма совершенными преобразователями энергии с относительно высокими коэффициентами полезного действия. Так, в самых мощных электродвигателях КПД равен 98—99,5%, а в электродвигателях мощностью 10 вт. к. п. д. составляет 20—40%. Такие величины к. п. д. при столь малых мощностях во многих других типах электродвигателей недостижимы.
Высокие энергетические показатели электродвигателей , удобство подвода и отвода энергии, возможность выполнения на самые разнообразные мощности, скорости вращения, а также удобство обслуживания и простота управления обусловили повсеместное их широкое распространение.
Теряемая в электродвигателях энергия превращается в тепло и вызывает нагревание отдельных их частей. Для надежности работы и достижения приемлемого срока службы нагревание частей электродвигателей должно быть ограничено. Наиболее чувствительными в отношении нагревания являются электроизоляционные материалы, и именно их качеством определяются допустимые уровни нагревания электродвигателей . Большое значение имеет также создание хороших условий отвода тепла и охлаждения двигателей.
Потери энергии в электрической машине увеличиваются с повышением ее нагрузки, а вместе с этим увеличивается и нагревание машины. Поэтому наибольшая мощность нагрузки, допускаемая для данной машины, определяется главным образом допустимым уровнем ее нагревания, а также механической прочностью отдельных частей двигателя, условиями токосъема на скользящих контактах и т. д. Напряженность режима работы электродвигателей переменного тока в отношении электромагнитных нагрузок (величины магнитной индукции, плотности тока и т.д.), потерь энергии и нагревания определяется не активной, а полной мощностью, так как величина магнитного потока в машине определяется полным напряжением, а не его активной составляющей. Полезная мощность, на которую рассчитан электродвигатель, называется номинальной. Все другие величины, которые характеризуют работу двигателя при этой мощности, также называются номинальным. К ним относят ся: номинальные напряжение, ток, скорость вращения, к. п. д. и другие величины, а для двигателя переменного тока также номинальная частота и номинальный коэффициент мощности.
Основные номинальные величины указываются в паспортной табличке (на щитке), прикрепленной к двигателю. Принято, что для двигателя номинальная мощность является полезной мощностью на его валу, а для генератора — электрической мощностью, отдаваемой с его выходных зажимов. При этом для генераторов переменного тока дается либо полная, либо активная номинальная мощность (по последним стандартам — полная мощность). Для трансформаторов и некоторых других машин переменного тока в табличке всегда указывается полная номинальная мощность. Номинальные величины, методы испытаний электрических машин, а также другие их технико-экономические данные и требования регламентируются в России государственными стандартами (ГОСТ) на электродвигатели .
Номинальные напряжения электродвигателей согласованы в ГОСТ со стандартными номинальными напряжениями электрических сетей. Номинальные напряжения для электрических двигателей и первичных обмоток трансформаторов при этом берутся равными стандартным напряжениям электрических сетей, а для генераторов и вторичных обмоток трансформаторов — на 5—10% больше с целью компенсации падения напряжения в сетях. Наиболее употребительные номинальные напряжения электродвигателей следующие: для двигателей постоянного тока ПО, 220 и 440 в, для генераторов постоянного тока 115, 230 и 460 в, для двигателей переменного тока и первичных обмоток трансформаторов 220, 380, 660 б и 3, 6, 10 кв, для генераторов и вторичных обмоток трансформа торов 230, 400, 690 в и 3,15; 6,3; 10,5; 21 кв (для вторичных обмоток трансформаторов также 3,3; 6,6; 11 и 22 кв). Из более высоких напряжений для первичных обмоток трансфо рматоров стандартными являются 35, 110, 150, 220, 330, 500 и 750 кв и для вторичных обмоток 38,5; 121; 165; 242; 347; 525 и 787 кв.
В России, а также в большинстве других стран мира промышленная частота тока равна 50 гц, и большинство асинхронных электродвигателей поэтому также строится на 50 гц. В США и других странах Америки промышленная частота тока равна 60 гц. Для разных специальных назначений (электротермические установки, устройства автоматики и др.) применяются также электродвигатели с другими значениями частоты тока.
По мощности электродвигатели можно подразделять на следующие группы: до 0,5 квт – электродвигатели весьма малой мощности, или микроэлектродвигатели, 0,5 – 20 квт – электродвигатели малой мощности, 20 – 250 электродвигатели средней мощности и более 250 квт — электродвигатели большой мощности. Эти границы между группами в определенной степени условны.